## Energetic Particle Contributions to A Magnetospheric Constellation Mission

G D Reeves, R D Belian, T E Cayton, R H W Friedel, M G Henderson, D N Baker, and H E Spence

AGU Fall Meeting, San Francisco, CA, December 8, 1997

# Why Energetic Particles?

- Great Physics
- **W** Unique Properties
- New Instruments
- Data Synthesis
- Space Weather Applications
- Practical Considerations

## Great Physics...

### They are the bulk of important populations

- Radiation Belts: structure & dynamics, precipitation, electrodynamics, climate
- Ring Current: buildup, decay, asymmetry, source for ENAs, etc.
- Substorm Injections: relationship to flow bursts, aurora, current wedge, etc.

### \* They are the signature of energetic processes

- Storms: global reconfiguration, energization & injection, precipitation, etc.
- Substorms: storm-substorm relationship, energy storage & release
- Relativistic Electron Events: source, acceleration processes, losses

# Unique Properties

**Gyro-Sounding of Boundaries & Gradients** 



## Unique Properties

### Large Scale-Size & Rapid Drift

- Rapid drifts mean that particles sample global electric and magnetic fields
- Energy-dependent sensitivity of drift paths to electric fields e.g. trapping boundaries
- Large-scale coherence of populations e.g. drift echoes
- Drift shell splitting for different pitch angles



Region

### New Instruments

\* 'This is not your father's solid state detector'

• Less is More:

Lower Power, Weight, Size & Cost

• Interchangeable Instruments:

e.g. GPS - X-ray/Dosimeter/Combined

• New Technologies:

e.g. Cad-Zinc-Telluride, Detector Arrays

### Data Synthesis



# Space Weather Applications

#### Direct practical benefits

- Spacecraft Effects: surface charging, bulk charging, single-event upsets
- Data Synthesis: fluxes, fluences & dose at any longitude, local time or orbit
- Education: basic physics of particles and fields, easily understood 'pictures'

#### Multi-use will still be important

- Multi-agency support: must benefit commercial, military, & scientific
- Use existing platforms: complement data from GOES, GPS, etc.

### Practical Considerations

#### Orbits

Lower altitude orbits are lower cost. Constellation may start as an inner magnetospheric mission

#### Telemetry

Energetic Particle instruments need relatively low bit rates and little on-board processing

#### Flexability

Each spacecraft must be simple but it may not be necessary, or desirable, to fly the same instruments on all satellites.

#### Continuous Success

Energetic Particle measurements can produce measurable successes early – before the full Constellation is deployed